1、谁发明了电,电的历史是什么?
富兰克林全名本杰明·富兰克林(Benjamin Franklin,1706年1月17日-1790年4月17日)发明了电。
富兰克林是美国历史上第一位享有国际声誉的科学家和发明家。
他为了对电进行探索曾经作过著名的“风筝实验”,在电学上成就显著;为了深入探讨电运动的规律,创造的许多专用名词如正电、负电、导电体、电池、充电、放电等成为世界通用的词汇。
他借用了数学上正负的概念,第一个科学地用正电,负电概念表示电荷性质。并提出了电荷不能创生、也不能消灭的思想,后人在此基础上发现了电荷守恒定律。
人类最早发现的电现象是摩擦起电现象。
公元前600年左右,古希腊正处于文化鼎盛的时期,贵族妇女外出时都喜欢穿柔软的丝绸衣服,带琥珀做的首饰。琥珀是一种树脂化石,把它对着光就呈显出黄色或红色的鲜艳色泽,是当 时较为贵重的装饰品。
人们外出时,总把琥珀首饰擦拭得干干净净。但是,不管擦得多干净,它很快就会吸上层灰尘。虽然许多人都注意到这个现象,但一时都无法解释它。有个叫 泰勒斯的希腊人,研究了这个神奇的现象。
经过仔细的观察和思索,他注意到挂在颈项上 的琥珀首饰在人走动时不断晃动,频繁地摩擦身上的丝绸衣服,从而得到启发。经过多次实验,泰勒斯发现用丝绸摩擦过的琥珀确实具有吸引灰尘、绒毛、麦秆等轻小物体的能力 。
于是,他把这种不可理解的力量叫做“电”。
2、电的发现,使用和历史
1、发现:1752年7月美国本杰明.富兰克林,以危险的方式接引空中雷电,证实自然界电的存在。并以此原理发明了避雷针。
2、使用和历史
1832年法国人皮克西制造出世界第一台试验性发电机。
1850年英国斯旺用纸碳制成灯丝泡问世。
1866年德国西门子制出可应用的发电机。
1879年10月21日,美国爱迪生(和英国约塞夫·斯旺)都研究碳质灯丝电灯泡。爱迪生经千余次的试验用碳素灯丝的白炽灯泡得到了实际应用,故称爱迪生发明了电灯。
1882年6月,美国纽约珍珠街电厂建立,是美国、也是世界第一个商业发电厂。同年7月26日,上海电气公司—乍浦路的一台12千瓦发电机组点亮了15盏弧光灯。
1882年塞尔维亚血统的克罗地亚人的尼古拉.特斯拉,发明世界首台交流发电机,旋转磁场,已获专利。
1885年交流电之父特斯拉设计多相交流电动机和发电机。
电真正的应用是在18世纪末19世纪,直到20世纪21世纪才真正的走入平常百姓家。
(2)历史通电产生发展的原因扩展资料:
从粒子到量子对“电”的认识
而类一直以自然界中存在的粒子与波来描述“电”的世界,到了19世纪,量子学说的出现,使得原本构筑的粒子世界又重新受到考验。海森堡(Werner Heisenberg)所提出的“测不准原理”认为一个粒子的移动速度和位置不能被同时测得;电子不再是可数的颗粒;也不是绕著固定的轨道运行。
一九二三年,德布罗意(Louis de Broglie)提出当微小粒子运动时,同时具有粒子性和波动性,称为“波粒二象性”,而薛定谔(Erwin Schrodinger)用数学的方法,以函数来描述电子的行为,并且用波动力学模型得到电子在空间存在的机率分布,根据海森堡测不准原理,我们无法准确地测到它的位置,但可以测得在原子核外每一点电子出现的机率。
在波耳的氢原子模型中,原子在基态时的电子运动半径,就是在波动力学模型里,电子最大出现机率的位置。随著科学的演进,人类逐渐理解“电”的物理量所能取得的数值是不连续的,它们所反映的规律是属于统计性的。
3、电产生的原理是什么?
在化学电池中,化学能直接转变为电能是靠电池内部自发进行氧化、还原等化学反应的结果,这种反应分别在两个电极上进行。负极活性物质由电位较负并在电解质中稳定的还原剂组成,如锌、镉、铅等活泼金属和氢或碳氢化合物等。
正极活性物质由电位较正并在电解质中稳定的氧化剂组成,如二氧化锰、二氧化铅、氧化镍等金属氧化物,氧或空气,卤素及其盐类,含氧酸及其盐类等。电解质则是具有良好离子导电性的材料,如酸、碱、盐的水溶液,有机或无机非水溶液、熔融盐或固体电解质等。
当外电路断开时,两极之间虽然有电位差(开路电压),但没有电流,存储在电池中的化学能并不转换为电能。当外电路闭合时,在两电极电位差的作用下即有电流流过外电路。
同时在电池内部,由于电解质中不存在自由电子,电荷的传递必然伴随两极活性物质与电解质界面的氧化或还原反应,以及反应物和反应产物的物质迁移。电荷在电解质中的传递也要由离子的迁移来完成。
(3)历史通电产生发展的原因扩展资料:
常见电池
1、干电池
干电池也叫锰锌电池,所谓干电池是相对于伏打电池而言,所谓锰锌是指其原材料。针对其它材料的干电池如氧化银电池,镍镉电池而言。锰锌电池的电压是15V。干电池是消耗化学原料产生电能的。它的电压不高,所能产生的持续电流不能超过1安培。
2、铅蓄电池
蓄电池是应用最广泛的电池之一。用一个玻璃槽或塑料槽,注满硫酸,再插入两块铅板,一块与充电机正极相连,一块与充电机负极相连,经过十几小时的充电就形成了一块蓄电池。它的正负极之间有2伏的电压。
另外,由于它的内阻极小,所以可以提供很大的电流。用它给汽车的发动机供电,瞬时电流可达20多安培。蓄电池充电时是将电能贮存起来,放电时又把化学能转化为电能。
3、锂电池
以锂为负极的电池。它是60年代以后发展起来的新型高能量电池。
4、简述电学的发展史
电 学 发 展 史
"电"一词在西方是从希腊文琥珀一词转意而来的,在中国则是从雷闪现象中引出来的。自从18世纪中叶以来,对电的研究逐渐蓬勃开展。它的每项重大发现都引起广泛的实用研究,从而促进科学技术的飞速发展。
现今,无论人类生活、科学技术活动以及物质生产活动都已离不开电。随着科学技术的发展,某些带有专门知识的研究内容逐渐独立,形成专门的学科,如电子学、电工学等。电学又可称为电磁学,是物理学中颇具重要意义的基础学科。
电学的发展简史
有关电的记载可追溯到公元前6世纪。早在公元前585年,希腊哲学家泰勒斯已记载了用木块摩擦过的琥珀能够吸引碎草等轻小物体,后来又有人发现摩擦过的煤玉也具有吸引轻小物体的能力。在以后的2000年中,这些现象被看成与磁石吸铁一样,属于物质具有的性质,此外没有什么其他重大的发现。
在中国,西汉末年已有"碡瑁(玳瑁)吸偌(细小物体之意)"的记载;晋朝时进一步还有关于摩擦起电引起放电现象的记载"今人梳头,解著衣时,有随梳解结有光者,亦有咤声"。
1600年,英国物理学家吉伯发现,不仅琥珀和煤玉摩擦后能吸引轻小物体,而且相当多的物质经摩擦后也都具有吸引轻小物体的性质,他注意到这些物质经摩擦后并不具备磁石那种指南北的性质。为了表明与磁性的不同,他采用琥珀的希腊字母拼音把这种性质称为"电的"。吉伯在实验过程中制作了第一只验电器,这是一根中心固定可转动的金属细棒,当与摩擦过的琥珀靠近时,金属细棒可转动指向琥珀。
大约在1660年,马德堡的盖利克发明了第一台摩擦起电机。他用硫磺制成形如地球仪的可转动球体,用干燥的手掌摩擦转动球体,使之获得电。盖利克的摩擦起电机经过不断改进,在静电实验研究中起着重要的作用,直到19世纪霍耳茨和推普勒分别发明感应起电机后才被取代。
18世纪电的研究迅速发展起来。1729年,英国的格雷在研究琥珀的电效应是否可传递给其他物体时发现导体和绝缘体的区别:金属可导电,丝绸不导电,并且他第一次使人体带电。格雷的实验引起法国迪费的注意。1733年迪费发现绝缘起来的金属也可摩擦起电,因此他得出所有物体都可摩擦起电的结论。他把玻璃上产生的电叫做"玻璃的",琥珀上产生的电与树脂产生的相同,叫做"树脂的"。他得到:带相同电的物体互相排斥;带不同电的物体彼此吸引。
1745年,荷兰莱顿的穆申布鲁克发明了能保存电的莱顿瓶。莱顿瓶的发明为电的进一步研究提供了条件,它对于电知识的传播起到了重要的作用。
差不多同时,美国的富兰克林做了许多有意义的工作,使得人们对电的认识更加丰富。1747年他根据实验提出:在正常条件下电是以一定的量存在于所有物质中的一种元素;电跟流体一样,摩擦的作用可以使它从一物体转移到另一物体,但不能创造;任何孤立物体的电总量是不变的,这就是通常所说的电荷守恒定律。他把摩擦时物体获得的电的多余部分叫做带正电,物体失去电而不足的部分叫做带负电。
严格地说,这种关于电的一元流体理论在今天看来并不正确,但他所使用的正电和负电的术语至今仍被采用,他还观察到导体的尖端更易于放电等。早在1749年,他就注意到雷闪与放电有许多相同之处,1752年他通过在雷雨天气将风筝放入云层,来进行雷击实验,证明了雷闪就是放电现象。在这个实验中最幸运的是富兰克林居然没有被电死,因为这是一个危险的实验,后来有人重复这种实验时遭电击身亡。富兰克林还建议用避雷针来防护建筑物免遭雷击,1745年首先由狄维斯实现,这大概是电的第一个实际应用。
18世纪后期开始了电荷相互作用的定量研究。1776年,普里斯特利发现带电金属容器内表面没有电荷,猜测电力与万有引力有相似的规律。1769年,鲁宾孙通过作用在一个小球上电力和重力平衡的实验,第一次直接测定了两个电荷相互作用力与距离二次方成反比。1773年,卡文迪什推算出电力与距离的二次方成反比,他的这一实验是近代精确验证电力定律的雏形。
1785年,库仑设计了精巧的扭秤实验,直接测定了两个静止点电荷的相互作用力与它们之间的距离二次方成反比,与它们的电量乘积成正比。库仑的实验得到了世界的公认,从此电学的研究开始进入科学行列。1811年泊松把早先力学中拉普拉斯在万有引力定律基础上发展起来的势论用于静电,发展了静电学的解析理论。
18世纪后期电学的另一个重要的发展是意大利物理学家伏打发明了电池,在这之前,电学实验只能用摩擦起电机的莱顿瓶进行,而它们只能提供短暂的电流。1780年,意大利的解剖学家伽伐尼偶然观察到与金属相接触的蛙腿发生抽动。他进一步的实验发现,若用两种金属分别接触蛙腿的筋腱和肌肉,则当两种金属相碰时,蛙腿也会发生抽动。
1792年,伏打对此进行了仔细研究之后,认为蛙腿的抽动是一种对电流的灵敏反应。电流是两种不同金属插在一定的溶液内并构成回路时产生的,而肌肉提供了这种溶液。基于这一思想,1799年,他制造了第一个能产生持续电流的化学电池,其装置为一系列按同样顺序叠起来的银片、锌片和用盐水浸泡过的硬纸板组成的柱体,叫做伏打电堆。
此后,各种化学电源蓬勃发展起来。1822年塞贝克进一步发现,将铜线和一根别种金属(铋)线连成回路,并维持两个接头的不同温度,也可获得微弱而持续的电流,这就是热电效应。
化学电源发明后,很快发现利用它可以作出许多不寻常的事情。1800年卡莱尔和尼科尔森用低压电流分解水;同年里特成功地从水的电解中搜集了两种气体,并从硫酸铜溶液中电解出金属铜;1807年,戴维利用庞大的电池组先后电解得到钾、钠、钙、镁等金属;1811年他用2000个电池组成的电池组制成了碳极电弧;从19世纪50年代起它成为灯塔、剧院等场所使用的强烈光电源,直到70年代才逐渐被爱迪生发明的白炽灯所代替。此外伏打电池也促进了电镀的发展,电镀是1839年由西门子等人发明的。
虽然早在1750年富兰克林已经观察到莱顿瓶放电可使钢针磁化,甚至更早在1640年,已有人观察到闪电使罗盘的磁针旋转,但到19世纪初,科学界仍普遍认为电和磁是两种独立的作用。与这种传统观念相反,丹麦的自然哲学家奥斯特接受了德国哲学家康德和谢林关于自然力统一的哲学思想,坚信电与磁之间有着某种联系。经过多年的研究,他终于在1820年发现电流的磁效应:当电流通过导线时,引起导线近旁的磁针偏转。电流磁效应的发现开拓了电学研究的新纪元。
奥斯特的发现首先引起法国物理学家的注意,同年即取得一些重要成果,如安培关于载流螺线管与磁铁等效性的实验;阿喇戈关于钢和铁在电流作用下的磁化现象;毕奥和萨伐尔关于长直载流导线对磁极作用力的实验;此外安培还进一步做了一系列电流相互作用的精巧实验。由这些实验分析得到的电流元之间相互作用力的规律,是认识电流产生磁场以及磁场对电流作用的基础。
电流磁效应的发现打开了电应用的新领域。1825年斯特金发明电磁铁,为电的广泛应用创造了条件。1833年高斯和韦伯制造了第一台简陋的单线电报;1837年惠斯通和莫尔斯分别独立发明了电报机,莫尔斯还发明了一套电码,利用他所制造的电报机可通过在移动的纸条上打上点和划来传递信息。
1855年汤姆孙(即开尔文)解决了水下电缆信号输送速度慢的问题,1866年按照汤姆孙设计的大西洋电缆铺设成功。1854年,法国电报家布尔瑟提出用电来传送声音的设想,但未变成现实;后来,赖斯于1861年实验成功,但未引起重视。1861年贝尔发明了电话,作为收话机,它仍用于现代,而其发话机则被爱迪生的发明的碳发话机以及休士的发明的传声器所改进。
电流磁效应发现不久,几种不同类型的检流计设计制成,为欧姆发现电路定律提供了条件。1826年,受到傅里叶关于固体中热传导理论的启发,欧姆认为电的传导和热的传导很相似,电源的作用好像热传导中的温差一样。为了确定电路定律,开始他用伏打电堆作电源进行实验,由于当时的伏打电堆性能很不稳定,实验没有成功;后来他改用两个接触点温度恒定因而高度稳定的热电动势做实验,得到电路中的电流强度与他所谓的电源的"验电力"成正比,比例系数为电路的电阻。
由于当时的能量守恒定律尚未确立,验电力的概念是含混的,直到1848年基尔霍夫从能量的角度考查,才橙清了电位差、电动势、电场强度等概念,使得欧姆理论与静电学概念协调起来。在此基础上,基尔霍夫解决了分支电路问题。
杰出的英国物理学家法拉第从事电磁现象的实验研究,对电磁学的发展作出极重要的贡献,其中最重要的贡献是1831年发现电磁感应现象。紧接着他做了许多实验确定电磁感应的规律,他发现当闭合线圈中的磁通量发生变化时,线圈中就产生感应电动势,感应电动势的大小取决于磁通量随时间的变化率。后来,楞次于1834年给出感应电流方向的描述,而诺埃曼概括了他们的结果给出感应电动势的数学公式。
法拉第在电磁感应的基础上制出了第一台发电机。此外,他把电现象和其他现象联系起来广泛进行研究,在1833年成功地证明了摩擦起电和伏打电池产生的电相同,1834年发现电解定律,1845年发现磁光效应,并解释了物质的顺磁性和抗磁性,他还详细研究了极化现象和静电感应现象,并首次用实验证明了电荷守恒定律。
电磁感应的发现为能源的开发和广泛利用开创了崭新的前景。1866年西门子发明了可供实用的自激发电机;19世纪末实现了电能的远距离输送;电动机在生产和交通运输中得到广泛使用,从而极大地改变了工业生产的面貌。
对于电磁现象的广泛研究使法拉第逐渐形成了他特有的"场"的观念。他认为:力线是物质的,它弥漫在全部空间,并把异号电荷和相异磁板分别连结起来;电力和磁力不是通过空虚空间的超距作用,而是通过电力线和磁力线来传递的,它们是认识电磁现象必不可少的组成部分,甚至它们比产生或"汇集"力线的"源"更富有研究的价值。
法拉第的丰硕的实验研究成果以及他的新颖的场的观念,为电磁现象的统一理论准备了条件。诺埃曼、韦伯等物理学家对电磁现象的认识曾有过不少重要贡献,但他们从超距作用观点出发,概括库仑以来已有的全部电学知识,在建立统一理论方面并未取得成功。这一工作在19世纪60年代由卓越的英国物理学家麦克斯韦完成。
麦克斯韦认为变化的磁场在其周围的空间激发涡旋电场;变化的电场引起媒质电位移的变化,电位移的变化与电流一样在周围的空间激发涡旋磁场。麦克斯韦明确地用数学公式把它们表示出来,从而得到了电磁场的普遍方程组——麦克斯韦方程组。法拉第的力线思想以及电磁作用传递的思想在其中得到了充分的体现。
麦克斯韦进而根据他的方程组,得出电磁作用以波的形式传播,电磁波在真空中的传播速度等于电量的电磁单位与静电单位的比值,其值与光在真空中传播的速度相同,由此麦克斯韦预言光也是一种电磁波。
1888年,赫兹根据电容器放电的振荡性质,设计制作了电磁波源和电磁波检测器,通过实验检测到电磁波,测定了电磁波的波速,并观察到电磁波与光波一样,具有偏振性质,能够反射、折射和聚焦。从此麦克斯韦的理论逐渐为人们所接受。麦克斯韦电磁理论通过赫兹电磁波实验的证实,开辟了一个全新的领域——电磁波的应用和研究。1895年,俄国的波波夫和意大利的马可尼分别实现了无线电信号的传送。后来马可尼将赫兹的振子改进为竖直的天线;德国的布劳恩进一步将发射器分为两个振荡电路,为扩大信号传递范围创造了条件。1901年马可尼第一次建立了横跨大西洋的无线电联系。电子管的发明及其在线路中的应用,使得电磁波的发射和接收都成为易事,推动了无线电技术的发展,极大地改变了人类的生活。
1896年洛伦兹提出的电子论,将麦克斯韦方程组应用到微观领域,并把物质的电磁性质归结为原子中电子的效应。这样不仅可以解释物质的极化、磁化、导电等现象以及物质对光的吸收、散射和色散现象;而且还成功地说明了关于光谱在磁场中分裂的正常塞曼效应;此外,洛伦兹还根据电子论导出了关于运动介质中的光速公式,把麦克斯韦理论向前推进了一步。
在法拉第、麦克斯韦和洛伦兹的理论体系中,假定了有一种特殊媒质"以太"存在,它是电磁波的荷载者,只有在以太参照系中,真空中光速才严格地与方向无关,麦克斯韦方程组和洛伦兹力公式也只在以太参照系中才严格成立。这意味着电磁规律不符合相对性原理。
关于这方面问题的进一步研究,导致了爱因斯坦在1905年建立了狭义相对论,它改变了原来的观点,认定狭义相对论是物理学的一个基本原理,它否定了以太参照系的存在并修改了惯性参照系之间的时空变换关系,使得麦克斯韦方程组和洛伦兹力公式有可能在所有惯性参照系中都成立。狭义相对论的建立不仅发展了电磁理论,并且对以后理论物理的发展具有巨
5、通信的发展历史
1、19世纪中叶以后,随着电报、电话的发有,电磁波的发现,人类通信领域产生了根本性的巨大变革,实现了利用金属导线来传递信息,甚至通过电磁波来进行无线通信,使神话中的“顺风耳”、“千里眼”变成了现实。
从此,人类的信息传递可以脱离常规的视听觉方式,用电信号作为新的载体,同此带来了一系列铁技术革新,开始了人类通信的新时代。
2、1837年,美国人塞缪乐.莫乐斯(Samuel Morse)成功地研制出世界上第一台电磁式电报机。他利用自己设计的电码,可将信息转换成一串或长或短的电脉冲传向目的地,再转换为原来的信息。
1844年5月24日,莫乐斯在国会大厦联邦最高法院会议厅进行了“用莫尔斯电码”发出了人类历史上的第一份电报,从而实现了长途电报通信。
3、1864年,英国物理学家麦克斯韦(J.c.Maxwel)建立了一套电磁理论,预言了电磁波的存在,说明了电磁波与光具有相同的性质,两者都是以光速传播的。
4、1875年,苏格兰青年亚历山大.贝尔(A.G.Bell)发明了世界上第一台电话机。并于1876年申请了发明专利。1878年在相距300公里的波士顿和纽约之间进行了首次长途电话实验,并获得了成功,后来就成立了著名的贝尔电话公司。
5、1888年,德国青年物理学家海因里斯.赫兹(H.R.Hertz)用电波环进行了一系列实验,发现了电磁波的存在,他用实验证明了麦克斯韦的电磁理论。这个实验轰动了整个科学界,成为近代科学技术史上的一个重要里程碑,导致了无线电的诞生和电子技术的发展。
(5)历史通电产生发展的原因扩展资料
1、互联移动跨时空:移动通信能力飞速发展,全国实现联网
移动通信能力飞速发展。在1988年到1997年的十年间,我国经历了移动通信发展的第一个高峰期间移动交换机容量从不到3万户猛增到2585.7万户,10年间增长861倍。
我国选用900MHz频段的TACS系统主要引进了摩托罗拉(A网)和爱立信(B网)的交换机、基站、控制系统等设备,1995年底,A网覆盖的21个省市和B网覆盖的15个省市实现自动漫游,形成真正的全国联网。
1994年,由电子部联合铁道部、电力部及广电部组建成立中国联通。1998年,中国电信从当时的邮电部脱离组建。1999年,网通成立。
2、布局重组谋生态:“动感地带”推向全国,电信业重组拉开帷幕
2001年,中国移动广东分公司在广州和深圳两地召开品牌推介会,“动感地带”作为新品牌进行试验推行。2003年,中国移动正式将“动感地带”品牌推向全国,它成为中国移动通信史上第一个客户品牌。
2006年8月,纽约证券交易所收市,中国移动段价以33.42美元收盘,总市值达到1325.8亿美元,成为全球市值最高的电信运营公司。2007年,中国移动成功收购Paktel。
2004年1月,村通工程面向全国推行。截至2007年,六家基础电信企业共为3759个无电话行政村新开通电话,全国行政村通电话比重达99.5%,29个省区市实现了所有行政村通电话。2007年5月,政府继续在全国启动自然村的村通工程,形成了行政村和自然村两方面工程并进的局面。
2007年3月,中国移动正式启动超过200亿元的TD—SCDMA网络建设招标,多家中外企业组成的四大阵营竞争激烈。
2008年5月,电信业重组拉开帷幕。随后,工信部等联合发布《关于深化电信体制改革的通告》。通告称,鼓励中国电信收购中国联通CDMA网,中国联通与中国网通合并,中国卫通的基础电信业务并入中国电信,中国铁通并入中国移动。这次改革重组完成后发放3G牌照。
专家称,电信重组在于打破垄断,随着通信技术的发展,移动替代固话趋势明显。重组后,三家运营商都拥有全业务能力,形成充分的竞争格局。
3、代际宏图标准中:通信业增长率高,5G将带动通信产业下一轮发展
不久前召开的全国工业和信息化工作会议中,工信部明确了2018年多项重点工作。其中涉及强化信息通信市场监管方面,工信部相关文件透露,计划开展VoLTE号码携带技术试验,研究制定号码携带全国推广方案。
工信部数据显示,初步核算,2017年电信业务总量达到27557亿元(按照2015年不变单价计算),比上年增长76.4%,增幅同比提高42.5个百分点;电信业务收入12620亿元,比上年增长6.4%,增速同比提高1个百分点。
2018年1-2月,电信业务总量完成6853亿元,同比增长117%;电信业务收入完成2168亿元,同比增长4.9%。
近年来,我国通信产业发展迅速,主要经营指标向好,5G将成为下一个发展契机。2017年8月,国务院印发了《关于进一步扩大和升级信息消费持续释放内需潜力的指导意见》,指出“加快第五代移动通信(5G)标准研究、技术试验和产业推进,力争2020年启动商用”。
由于5G应用前景广泛,5G战略制高点争夺战已风起云涌。
6、百年电力发展史
百年电力发展史:
19世纪百年电力发展史1800年,伏打发明第一个化学电池1831年,人们开始获得连续的电流法拉第制造了最早的发电机——法拉第盘1866年,西门子制成第一台使用电磁铁的自激式发电机1870年,格拉姆制成了环形电枢自激发电机供工厂电弧灯用电1875年,巴黎北火车站建成世界上第一个火电厂。
用直流发电供附近照明1879年,旧金山建成世界上第一座商业发电厂,两台发电机共22盏电弧灯。同年先后在法国和美国装设了试验性电弧路灯1879年,爱迪生发明白炽灯 1881年,英国建成了世界上第一座小型水电站1882年;
爱迪生在纽约建成世界上第一座正规发电厂1882年法国人德普勒在慕尼黑博览会上表演了电压为1500~2000V的直流发电机组经57km线路驱动电动泵1884年英国人制造了第一台汽轮机1885年制成交流发电机和变压器1886年3月在马萨诸塞州的大巴林顿建立了第一个交流送电系统,电源侧升压至3000V,经1.2km到受端降压至500V。
,显示了交流输电的优越性1891年德国在劳芬电厂安装了第一台三相100kW交流发电机,通过第一条三相输电线路送电至法兰克福 1894年建成利亚加拉大瀑布水电站。1896年采用三相交流输电送至35km外的布法罗。结束了1880年来交、直流电优越性的争论。
20世纪百年电力发展史1903年,威斯汀豪斯电气公司装设了第一台5000kW汽轮发电机组,标志着通用汽轮机组的开始。1916年,美国建成第一条90km的132kV线路1922年,美国在加州建成第一条220kV线路。
二战后,美国于1955、1960、1963、1970和1973等年份分别制成并投运30、50、100、115和130万千瓦汽轮发电机组 1954年,瑞典首先建成了380kV线路,采用2分裂导线,距离960km,将北极圈内的Harspranget水电站电力送至瑞典南部。
1954年,前苏联建成第一座核电站,1973年法国制成120万kW核反应堆 1964年,美国建成第一条500kV交流输电线路 1965年,加拿大建成第一条765kV交流输电线路1965年,苏联建成第一条±400kV的470km直流输电线路,送电75万千瓦 1970年,美国建成±400kV的1330km直流输电线路,送电144万千瓦 1989年,苏联建成第一条最高电压1150kV的1900km交流输电线路。
(6)历史通电产生发展的原因扩展资料:
百年电力的意义:
溶思想性、权威性、文献性、可视性和科普性于一体,是一部反映中国百年电力发展历史的文献片,也是建设社会主义和谐社会和节约型社会的电视教材,同时又是一部进行爱国主义和艰苦奋斗精神教育的主旋律作品。同时该片为社会公众提供了解中国电业及其发展历史的一扇窗口,是对电力职工进行职业教育和传统教育的理想教材;对电力企业文化建设,增强职工凝聚力、鼓舞士气和激发职工的自豪感、责任感和使命感具有重要的作用。
7、电力发明对历史发展产生的主要影响有
电的发明使人类工业社会进入到了 一个崭新的时代,促进了冶金技术、化工技术的发明,促进了以重工业位基础的发展,象钢铁工业、冶金工业、化学工业等等,而工业的发展又促进了英国、美国等国家主要城市的发展。美国作为资本主义国家的最后一个发展起来的国家,在1920年就完成了城市化的进程,当时它的城市化水平达到了51.4%。众所周知,城市化水平如果达到50%,就可以称之为一个城市国家。 磁与电1、人类早在公元前600年左右就已经知道电和磁的自然形态了。如:用力摩擦过的琥珀能吸住羽毛,天然磁铁石能吸牢小铁片,指南针的使用等。但第一个真正证明磁和电与魔术无关的,是英国物理学家和医学家威廉.吉尔伯特(1540-1603)。他科学地检验了磁力,并在公元1600年他的《认磁》一书中发表了以下理论:地球是具有两个极的大磁体,它使指南针的磁针始终指向北方。
2、美国政治家及科学家杰明.富兰克林(1706-1790)把自然界的闪电解释为大气层向地球的放电现象并为此做了一次危险的风筝实验。这次实验导致避雷针的发明,并证实了在这以前80多年居列克关于电与闪电一致性的看法。
3、在电学研究上首先遇到的困难是,较大的电量无法贮存起来。1746年,荷兰莱顿发明的莱顿瓶解决了这人问题。随后,威.华生用这些莱顿瓶使大约2公里长的导线通电,虽然不流不稳定。这一事实导致后来意大利物理学家亚历山大罗.伏特(1745-1827)研制成功最早的电池(组),它是人们电学研究中的一个重要突破。
4、利用稳定电源——电池(组)进行卓有成效研究工作的科学家之一是汉弗.戴维(1778-1829)。他的贡献有:(1)发现了苏打官司碳酸钠)经通电后分解成金属钠和水;(2)发明了矿工用的安全灯;(3)发现了笑气(氧化亚氮)的麻醉性;(4)作出的最大贡献是在化学键的电性方面取得的研究成果。戴维的助手迈克尔.法拉第后来继续了他的工作。
5、法拉第(1791-1867)的重要贡献是完全证实了电和磁之间的关系,从此他奠定了电化学、现代原子科学和电子学的基础。
6、大约在法拉第发现的30年后,苏格兰物理学家詹.克.麦克斯韦(1831-1879)根据法拉第的实验结果建立了反映磁和电之间关系的方程组。他的重要观点和发现包括:(1)预言了电磁波的存在,认为振荡着的电荷会产生电磁波,这种波兼具电的性质和磁的性质;(2)从理论上计算了电磁波的速度,发现它与光速是一样的,因此断定光本身就是一种电磁现象。
7、德国物理学家赫兹(1857-1894)在1888年最后证明了电磁波的存在。根据他的证明,所得重要结论有二:(1)电磁波(除频率较低者外)与光和热辐射具有同样的性质;(2)有一个完整的电磁波光谱存在着,电磁波的波长比光波长得多。赫兹的研究成查,为无线电的发展铺平了道路。
8、1879年,英国化学家兼物理学家克鲁克斯(1832-1919)制成了高真空度(10-7大气压)放电管,随后科学家们对由此而来的阴极射线和粒子说展开过辩论。在争论的基础上,德国科学家伦琴(1845-1923)开展了一系列实验研究工作,终于在1895年发现了一种直线传播、穿透力强、看不见的射线,他用数学上表示示知数的X取名,称之为“X射线”。“X射线”的发现,使伦琴在1901年成为荣获世界上第一个诺贝尔奖的物理学家。由于“X射线”不随磁场而偏转,从而又在电磁波的领域之内,大大地扩展了人们的科学视野,将人们引入一个完全陌生却又色彩斑谰的微观世界<
8、电的发展史
早在对于电有任何具体认知之前,人们就已经知道发电鱼会发出电击。根据公元前2750年撰写的古埃及书籍,这些鱼被称为“尼罗河的雷使者”,是所有其它鱼的保护者。大约两千五百年之后,希腊人、罗马人,阿拉伯自然学者和阿拉伯医学者,才又出现关于发电鱼的记载。
1832年法国人皮克西制造出世界第一台试验性发电机。1850年英国斯旺用纸碳制成灯丝泡问世。1866年德国西门子制出可应用的发电机。
1879年10月21日,美国爱迪生(和英国约塞夫·斯旺)都研究碳质灯丝电灯泡。爱迪生经千余次的试验用碳素灯丝的白炽灯泡得到了实际应用,故称爱迪生发明了电灯。
杰克·基尔比于1958年和罗伯特·诺伊斯于1959年分别独立发明集成电路。现今,大量晶体管、二极管、电阻器、电容器等等电子原件都可以被装配在单独的集成电路里。
电真正的应用是在18世纪末19世纪,直到20世纪21世纪才真正的走入平常百姓家。
(8)历史通电产生发展的原因扩展资料起电现象
摩擦起电,是通过摩擦的方式使得物体带上电荷的物理现象。摩擦起电的步骤,是使用两种不同的绝缘体相互摩擦,使得它们的最外层电子得到足够的能量发生转移,摩擦起电后两绝缘体必带等量异性电。
静电吸附,是当带静电的物体靠近微小的不带静电的物体时,微小物体表面的自由电荷发生转移,感应出与带静电物体相反的电性,而被吸引贴附于带静电物体上。利用静电吸引轻小物体的原理,可以达到吸附工业粉尘的效果。
静电感应,是指导体中的电荷在外电场的作用下在导体中重新分布的现象,由英国科学家约翰·坎通和瑞典科学家约翰·卡尔·维尔克分别在1753年和1762年发现。
静电屏蔽,是指对于一个接地的空腔导体,外接电场不会影响腔内的物体,腔内带电体的电场也不会影响腔外的物体。
静电屏蔽的应用很广泛,例如电子仪器外的金属网罩、电缆外层包裹的金属皮等都是用于防止外部电场对内部的影响。需要注意,如果外部的电场是交变电场,则静电屏蔽的条件不再成立,另见电磁屏蔽。
9、电的发现、使用和历史
人类用电灵感应该是来自于自然闪电现象。
早在1752年富兰克林著名的风筝实验证明天空的闪电和地面上的电是一回事。其实人类从古至今就一直在接触电,只是没有理性加以应用,闪电静电都是自然电的一种,电是像电子和质子这样的亚原子粒子之间的产生排斥力和吸引力的一种属性,是自然界四种基本相互作用之一,至于说人类谁最先发现了电,认识了电无可追溯。
早在1767年蒲力斯特里发现静态电荷间的作用力与距离平方成反比的定律标志着量性方面开始发展,同时也为静电的基本定律奠定了基础
1865年苏格兰的马克斯威尔提出电磁场理论的数学式,这理论提供了位移电流的观念,磁场的变化能产生电场,而电场的变化能产生磁场
就知道这么多了
10、通信发展的历史
1、形体时代通过身体、眼神、手势及山石树木等自然媒体相结合传递信息。
2、口语时代直立行走使得人类对信息传递方式的需求提高从而催生了语言。
3、文字书写时代 随着生产力的发展人类对信息记录有了需求,文字随之产生。
4、印刷时代1044年,毕升发明活字印刷术。1450年,日耳曼人古腾堡发明金属活字印刷术。
5、1837年,美国人莫尔斯发明电报机。
6、1857年,横跨大西洋海底电报电缆完成。
7、1875年,贝尔发明史上第一支电话。
8、1895年,俄国人波波夫和意大利人马可尼同时成功研制了无线电接收机。
9、1895年,法国的卢米埃兄弟,在巴黎首映第一部电影。
10、1912年,泰坦尼克号沉船事件中,无线电救了700多条人命。
11、1920年代,收音机问世。
(10)历史通电产生发展的原因扩展资料
通信的组成:
1、信源:消息的产生地,其作用是把各种消息转换成原始电信号,称之为消息信号或基带信号。
2、发送设备:将信源和信道匹配起来,即将信源产生的消息信号变换为适合在信道中搬移的场合,调制是最常见的变换方式。
3、信道:传输信号的物理媒质。
4、接收设备:完成发送设备的反变换,即进行解调、译码、解码等等。它的任务是从带有干扰的接收信号中正确恢复出相应的原始基带信号来。
5、信宿:传输信息的归宿点,其作用是将复原的原始信号转换成相应的信息。